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Soft Condensed Matter   (© P. Schurtenberger)

Soft Matter -

„complex fluids“

world between

fluid and solid

Length- and

Timescales

Contrasts

Equilibrium 

and

Non-Equilibrium

States
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Characteristic length and time scales 
(© P. Schurtenberger)
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SAXS

WAXS

X-rays

SAXS and WAXS

DETECTOR

Beam

Stop

Andre Guinier Otto Kratky

The pioneers of Small Angle Scattering
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Small – Angle : Supramolecular Envelope

Bragg‘s law:

sin q/2 = l / 2d

large d

small d

small q

large q

Wide - Angle – Atomic/Molecular Lattice

X-ray

ki

kf
q

I(q)

q

SAXS and WAXS

For CuKα 0.154 nm (8 keV)

20 deg    0.5 nm

0.9 deg 10 nm

0.09 deg 100 nm
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The Scattered Field Es(q)



The scattering amplitudes of all 

coherently scattered waves have 

to be added according to their 

amplitude and relative phase .

The phase difference depends 

on the relative location of the 

scattering centers.

Es(q)
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The Phase Difference  and the Scattering Vector q

 = -(2/l)r(s-s0)

Now we introduce the scattering 

vector q :

q = (2/l)(s-s0)   = -qr

Its magnitude is:

q = 4/l sin q/2

a - b = rs0 - rs = -r(s-s0)

The path length difference is 

given by the length 

difference between the two 

paths a and b:

The phase difference  is 

given by the wave number 

(2/l) times the path length 

difference:
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The Scattered Field Es(q)

( ) ( ) i

s

V

E const e d = 
qr

q r r

In order to find the total scattered field we have to integrate over the whole

illuminated scattering volume V

We can now express the density  (r) by its mean and its fluctuations (r):

     =  r r

   i i
s

V V

E const e d e d  
 
 
  

=    
qr qrq r r r

    i

s

V

E const e d = 
qr

q r r

The Fourier integral is linear, so we can rewrite the above equation:

Taking into account the large dimension of the scattering volume we get:
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From Scattering Amplitudes to Scattering Intensities

For monodisperse dilute systems we can write:

   2

1 1| ( ) |sI q N E NI q=   =q

We have introduced the single particle scattering amplitude E1(q) which is the 

scattered field resulting from integration over the particle volume only. 

1( ) ( ) i

V

E e d = 
qr

q r r

  1 2( )2

1 1 1 1 2 1 2| ( ) | ( ) ( ) ( )
i

V

E E E e d d 
  

=  =   
q r r

q q q r r r r

We put r1 - r2 = r and use r2 = r1 - r and introduce the convolution square of the 

density fluctuations:

2

1 1 1( ) ( ) ( ) ( )
V

d     =   r r r r r r
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2π/D2π/D

SAXS and WAXS

a

0

1

D

a

02π/a -2π/a

In
te

n
s
it
y
 (

a
.u

.)

)2/sin(
4

q
l


=q

2π/a 2π/a

SAXS:

peak width (+ shape) → particle size

WAXS:

positions → lattice (type, spacings, strain)

width + shape → particle size

+ lattice strain fluctuations
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The Convolution Square of the Density Fluctuations 

γ(r) and γ(r):

The function γ(r) is calculated by shifting the “ghost” 

particle a vector r and integrating the overlapping 

volume.

This function is also called spatial autocorrelation 

function (ACF). 

The spatially averaged convolution square γ(r) results 

from the same process, the ghost is shifted by a 

distance r = |r|, but we have to average over all possible 

directions in space. 

2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) ( )
V

r r V d     =  =    =     r r r r r
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RDG: Spatially Averaged Intensity I(q)

 2 2

1( ) | ( ) | i

V

I q E e d =   =   
qr

q r r

The spatially averaged intensity I(q) is given by:

  2

0

sin
4

qr
r r dr

qr
 



= 

by introducing the pair distance distribution function (PDDF) p(r) with

     2 2 2p r r r r r =  =  

we finally get

 
0

sin ( )
( ) 4

qr
I q p r dr

qr




= 
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The Scattering Problem and the Inverse Scattering Problem
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Definition of the Pair Distance Distribution Function

(PDDF) p(r)

We can relate the meaning of a distance histogram 

to the PDDF p(r) if the particles are homogeneous. 

The height of p(r) is proportional to the number of 

distances that can be found inside the particle within 

the interval r and r+dr

The p(r) function of inhomogeneous particles is 

proportional to the product of the difference 

scattering lengths nink [ ] of two 

volume elements i and k with a center-to-center 

distance between r and r+dr and we sum over all 

pairs with this distance.

i i in  = ( )dV( ) r r
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Inverse Problem in Scattering – Artists View*

primary beam

sample design of the 

experiment

result in

q-space

?
structure 

of the scattering particle

* “Asterix in Belgium”       

associated by Anna Stradner & Gerhard Fritz

?

primary beam

sample
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RDG: The Particle Form Factor

   1 1(0) ( )sI q NI q NI P q= =

  1

1

( )

( 0)

I q
P q

I q
=



I1(0) = V2Δρ2 intensity of single particle at q = 0

P(q) particle form factor, where

The normalized form factor P(q) contains information about size and structure of the 

particle.

Form factor of a homogeneous sphere:

2

3

3(sin cos )
( )

( )

qR qR qR
P q

qR

 
=  

 
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The Particle Form Factor

The function has minima for tan(qR) = qR, or qR = 4.49, 7.73, …
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Different Shapes of Homogeneous Particles

Comparison of a sphere (full line) an oblate ellipsoid (dashed line) and a 

prolate ellipsoid with the same volume.
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Rod-like Particles

Let us regard a rod of length L and of cross-section Ac = The cross-section Ac

(with maximum dimension d) should be small in comparison to the length of the

whole particle L (d<<L). For q > 1/L we can write

   c

L
I q I q

q


= 

The cross-section scattering function Ic(q) is related to the cross-section 

distance distribution pc(r) by

     0

0

2c cI q p r J qr dr


= 

where

     2 ' ( ' )c c c c

Ac

p r r r r r r r dr   =  =   
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Scattering Function for a Long, Rod-like 

Particle Schematic Representation

The different regimes can be 

visualized is a log(I) vs. log(q) plot 

of the scattering curve:

The Guinier regime, the q-1 regime 

and the cross-section regime.
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PDDF‘s for Rod-like Particles

1 2

L   
2 2 2

c

r A A

2 1
p(r) =     df df dx =  (L  r),A

4 2
 

 
    

PDDF from homogeneous prisms with edge

lengths of: (a) 50:50:500, (b) 50:50:250 and (c)

50:50:150

PDDF for three parallel epipeds with constant

length L (400 Å) and constant cross-section

area Ac but varying length of the edges: 40:40,

--- 80:20 and ----- 160:10.
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Flat Particles

Let us now consider a flat particle, with a finite and constant thickness Dt, being

extremely large in the two other dimensions with an area A. In full analogy to

the case of the rod we can separate the scattering amplitude into a planar

factor 2Aq-2 and a thickness-factor It(q), i.e. the total intensity is given by

The thickness-factor is related to the thickness distance distribution pt(r) by 

where

     
2

2
.plane t t

A
I q I I q I q

q


=  = 

     
0

2 cost tI q p r qr dr



= 

       
0

2 ' ' .t t tp r r r r r dr  


= =   
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Scattering Function for a Flat, Lamellar Particle.

Schematic Representation

The different regimes can 

be visualized is a log(I)

vs. log(q) plot of the 

scattering curve:

The Guinier regime, the 

q-2 regime and the 

thickness regime.
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PDDF‘s for Flat Particles

Sketch for the qualitative discussion of 

the PDDF of a flat particle

PDDFs of lamellar particles with the same basal

plane (200 x 200Å) and different thickness Dt: (a) Dt

= 10Å, (b) Dt = 20Å and (c) Dt = 30Å.
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Inhomogeneous Particles: 

Spheres and Cylinders with Radial Inhomogeneity

Spherical multilayer models with constant

outer diameter of 200 Å. PDDFs in the left part,

density profiles in the right part of the figure.

Circular cylinders with a constant length of 

480 Å and an outer diameter Dc of 48 Å. (a) 

Homogeneous cylinder, (b) hollow cylinder, (c) 

inhomogeneous cylinder. The PDDFs are 

shown on the left, the corresponding radial 

density distributions (r) on the right.
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Aggregates - Dimers

PDDFs from dimer models built from prolate ellipsoids. Monomers (full line), dimers 

(broken line), and difference between dimers and monomers (thick full line).
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Polydisperse Systems

Scattering curves of Gaussian size distributions of spheres with varying width (see 

inset).

     0

0

,i iI q c D R P q R dR



= 

     3

0

0

,v vI q c D R R P q R dR



=  

     6

0

0

,n nI q c D R R P q R dR



= 

Intensity Distribution

Volume or Mass Distribution

Number Distribution
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Radius of Gyration

The radius of gyration is one of the most important parameters in the field of small-

angle scattering. In full analogy to the radius of intertia in mechanics it is defined as

According to the momentum theorem of Fourier transformation the second moment

of a function in one space is related to the second derivative (curvature) of its

Fourier transform at the origin. This relation is the basis of the so-called Guinier

approximation for the description of I(q) for low q derived from a series expansion:

2

12
( )

( )

i i

g

i i

r r dV
R

r dV






=







2 2

3( ) (0)
q Rg

I q I e


=

We can also use another relation for the estimation of the radius of gyration:

2

2
( )

2 ( )
g

p r r dr
R

p r dr
=




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Radius of Gyration  - Guinier Plot

From the previous equation it is clear that we can calculate the radius of gyration

from the PDDF once it is known. Otherwise we can use the Guinier

approximation to determine Rg directly from the scattering data with a so-called

Guinier-plot.

Plotting ln (I(q)) vs q2 we get a straight line with a slope proportional to Rg
2.

Example for a Guinier plot from scattering data

of a protein solution with varying concentration,

including an extrapolation to zero concentration.
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Radius of Gyration of the Cross-Section

For rod-like particles we can also define a radius of gyration of the cross-section

which can be calculated from pc(r) by

or it can be estimated in reciprocal space form

by a so-called cross section Guinier plot [log(I(q)q) vs. q2].

2 2

2( ) (0)
cq R

c cI q I e


=

2

2
( )

2 ( )

c

c

c

p r r dr
R

p r dr
=




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Radius of Gyration of the Thickness Function

For lamellar particles we can also define a radius of gyration of the thickness

function which can be calculated from pt(r) by

or it can be estimated in reciprocal space form

by a so-called thickness Guinier plot [log(I(q)q2) vs. q2].

 

 

2

2

2

t

t

t

p r r dr
R

p r dr
=





   
2 2

0 tq R

t tI q I e


=
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Porod Limit - Porod Plot - Fractals

We proceed now to the discussion of the final slope of the scattering curve

at high q-values, we may expect this to depend mainly on the fine structure

of the particle.

2

4

2
( ) ( )qI q S

q


 =   
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Contrast Variation:  Index Match

A mixture of H2O and D2O allows to

match different regions in a sample.

When the monster came, Lola, like the peppered moth and

the arctic hare, remained motionless and undetected,

Harold, of course, was immediately devoured!

Autrans’94 R. May  (found in „Los Alamos Science“)
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Contrast Variation in SAXS by Anomalous 

Scattering

This method, also known as resonant small

angle scattering uses another possibility for

the variation of the contrast. Near the inner

shell absorption edge, the coherent scattering

length or atomic scattering factor of an atom

is a function of the energy E of the X-ray

photon:

f(E) = Z + f'(E) + if”

Energy variation is only possible with the

“white” X-ray beam of a synchrotron. The

main problem for applications in chemistry is

the fact that the edges for C, H, N and O are

outside the useful energy window at very low

energies. In solution experiments this effect

might be useful for heavy counter ions (Br+) in

micellar systems.

Typical energy dependence of f’ and f'” near

the absorption edge of an element. Shown

here is the nickel K edge at 8333 eV.
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The Scattering Problem and the Inverse 

Scattering Problem

For the solution of the inverse Problem it is essential to be able to calculate the PDDF 

form the experimental scattering curve with minimum termination effect.
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From experimental data to the PDDF

All Transformations T1 to T4 are linear and are mathematically well defined, this does 

not hold for their inverse transformations.
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The Principles of the Indirect Fourier Transformation I
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Other IFT Applications - Equations

Summary of the different transforms T1 used in IFT:

Arbitrary shape:

Cylindrical Symmetry:

Lamellar Symmetry:

The structure is the same for all equations, just the kernels of the integrals differ!

 
0

sin ( )
( ) 4

qr
I q p r dr

qr




= 

     
2

0

0

2
c

L
I q p r J qr dr

q




= 

     
2

0

4
cosplane t

A
I q p r qr dr

q




= 
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Deconvolution of the PDDF – The Magic Square

The Magic square of small-angle scattering: The correlations between the radial

density (r) and the PDDF p(r) and their Fourier transforms, the scattering amplitude

F(q) and scattering intensity I(q) under the assumption of spherical symmetry.
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Deconvolution of the PDDF – Principles I

Here we are facing a similar situation as in the IFT method: for a given density

distribution (r) we can calculate the exact p(r)-function for all three cases

(spherical, cylindrical and lamellar symmetry) by a convolution square

operation but we do not have a useful description of the inverse problem, the

so-called convolution square root.

As an additional problem we have to keep in mind the fact, that the

convolution square operation is a nonlinear transformation which will not

allow an inversion by the solution of a simple linear least squares technique

like in the case of the indirect Fourier transformation.

We start again with a series expansion of the radial density function (r) in the 

usual way:

   
1

N

i i

i

r c r 
=

= 
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Deconvolution of the PDDF – Principles II

The approximation  for the density profile corresponds to an approximation to the PDDF:

     2

1

2
N

ii i ik i k

i i k

p r V r c V r c c
= 

=  

The overlap integrals Vik(r) describe the overlapping of the i-th with the k-th step or shell

where one function has been shifted an arbitrary distance r. These overlap or

convolution integrals are very simple for the planar case (one-dimensional convolution

of two step function leads simply to a triangle) but are a bit more complicated for the

cylindrical and spherical case:

Illustration of the five sub-regions for the 

calculation of the overlap integrals Vik(r).
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Deconvolution of the PDDF – Iterative Solution

The above equation for the PDDF is nonlinear in its coefficients ci. The

corresponding least squares problem has to be linearized by a series expansion

where higher order terms are omitted.

Such linearized systems must be solved iteratively. In addition one needs

starting values ci
(0) for the first iteration. Here we set all coefficients equal to a

constant.

We then calculate the difference function

       o
p r p r p r = 

which would be zero only if we would know the exact coefficients ci. 

Now we calculate correction terms ci in order to minimize p(r) in a least square 

sense. 

          
2

1

2
N

ii i i ik i i k k i k

i i k

V r c c V r c c c c c c p r
= 

         =     
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Deconvolution of the PDDF – Iterative Solution II

We linearize this equation by omitting the second order terms ci
2 and cick

and we get

   
1 1

2
N N

i ik j k j

k i

c V r c p r
= =

 = 

for j = 1,2,3,... M and M > N. These equations can be written in matrix notation

where the matrix elements Ajk are given by

This system is solved with a weighted least squares condition considering the

standard deviations of the function p(r) and we get the correction terms c.

   
   or   jk k jA c p =   = 

0 0
A c p

 
1

2
N

jk i ik j

i

A c V r
=

= 
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Deconvolution of the PDDF – Iterative Solution III

   1 0

i i ic c c=  

and with these coefficients we start the next iteration, get further improvements

and if this iterative procedure converges we have solved the problem.

This problem is, however, again an ill-posed problem so that we have to add again

a stabilization criterion and we have to solve the nonlinear problem by iteration for

every Lagrange multiplier.

Many applications performed in the meantime have shown that the deconvolution

technique works well in combination with the indirect transformation method, also

in cases where the conditions of symmetry are not perfectly fulfilled.

They allow the calculation of improved coefficients ci
(1):
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SAXS 2.0: Theoretical Background 

Assumption of monodisperse globular particles:

I(q) = n.P(q).S(q)

n  ...    Particle density

q ...   Scattering vector

I(q) ...  Scattering Intensity

P(q) ... Form Factor P(q)  p(r)

S(q) ... Structure Factor [S(q) - 1]  [g(r) -1]

Interaction Potential: Hard Spheres Potential 

Closure relation: Percus-Yevick-Approximation (analyt. Solution)

Kinning & Thomas, Macromolecules (1984), 17
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Fourier Transformation

I(q) = n.P(q).S(q)

Form Factor P(q)  Pair Distance Distribution Function p(r)

Structure Factor [S(q) - 1]  Total Correlation Function [g(r) -1] r2

Due to the nearly identical structure of these equations it is obvious that it

is not a trivial task to split the scattering intensity into these factors by

mathematical means

sin
1 [ 1]

 

2

0

(qr)
S(q)  =  4 n  g(r) -    drr

qr




 

sin

0

 (qr)
P(q) = 4   p(r)  dr

qr





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Particle Form Factor P(q)  - Artists View

Asterix Legionnaire,   associated by Judith Brunner-Popela
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Structure factor S(q)  - Artists View

 Le Grand Fossé associated by Judith Brunner-Popela
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ATSAS Package

D.Svergun Hamburg Group
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hCDC45, 1.85 mg/ml, 40µl, 30 s 

CDC45 protein conserved in all eukaryotes 

initiation of DNA replication

progression of the replication fork

Scattering on human CDC45 Protein

core T. thermophilus RecJ 

helical domain of the acyl-CoA Kastranova I, Onesti S et al.,J.Biol.Chem. (2012) 
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S. Bernstorff P. Laggner F. Schmid
B.Sartori

C.Morello

I. ShyjumonM.Rappolt
B.Marmiroli
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S C I E N C E      P A S S I O N     T E C H N O L O G Y

SAXS applications in life science and material 

science using synchrotron
Heinz Amenitsch

TU-Graz & Austrian SAXS beamine, ELETTRA
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Sample Environment

Simultaneous characterization: IR-Spectroscopy, UV-vis ……

Chemical Potential

50 ms /70 µs

X-ray beam

I

q

jet

B

A

B

µ-mixer

time

X-ray beam

I

q

jet

B

A

B

µ-mixer

time

Biologic SFM-4
µFluidics

10 mm

Entrance Nipple

Specular

reflected

beam

Diamond Windows

Pressure Media

Silicon Waver

Pressure

0 - 3 Kbar

3000 bar/ 10 ms

Hydrostatic HP-Cell

Temperature

-195 °C to 1000 °C

20 °C / 2 ms

Peltier Moduls / 

Oxford Cryostream

IR-Laser

Single Particle Experiments
Mechanical Parameters

Force, Extension

Biaxial device

20 µs, s
physological

conditions

DSC Microcalix

Heat capacity

-40 to 150°C

1°C /min

Liquids, Solids, 

Powders, Films,

Gas-phase 
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Characterization of carbon nanotube– polyoxometalate electrocatalytic interfaces

F.Toma, et al.,  Nature Chemistry, (2010), 10.1038/NCHEM.761
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Characterization of carbon nanotube– polyoxometalate electrocatalytic interfaces

Ru4POM Precursor SiW10O36

Simulation Crysol ATSAS D.Svergun
Double ellipsoid 

model
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Amphiphilic designer-peptides

a phospholipid an amphiphilic designer-peptide

LDL

a6yk

Gazit, E. Chem. Soc. ReV. 2007

Cherny, I.; et al., Angew. Chem., Int. Ed. 2008
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Self-assembly

Self-

Assembly

Spherical Micelles

Vesicles

Bilayers

Donuts

Helical Ribbons

Fibers

Rods

Tubes
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It‘s a double helix!

75 mM
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The self-assembly process

Pontoni D. et al., J. Chem, Phys, 2003

Svergun D.I. et al., J. Appl. Cryst., 1995

10-45 mM Monomers

60m M 3-layered single helical

tape

75 mM 3-layered double

helical tape

2

3

In
te

n
s
it
y
 (

c
m

-1
)

q (nm-1)

1
1

2

3

60 mM      (+2h)

75 mM

45mM

K.Kronmüller et al. sub

to JACS (2013)
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Scanning SAXS - Biomaterials

Pic. O.Bunk, et al. New J. Phys. 11 (2009) 123016

Spot < 0.1 -1 µm

Bone

Wood

Silica-Sponges, Shells, 

Tooth, Lobster, Worms, 

Starch, Eyes……,

P.Fratzl

P.Fratzl
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Scanning SAXS-Integral Parameters

Porod (1951,1952)

Integated Intensity

Porod Invariant

T-Parameter
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Scanning SAXS - Orientation

Geiser S. et al., Biointerphases

Journal for the Quantitative Biological Interface Data, 2012
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Scanning SAXS - Tooth
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Cross section of a human artery

1 mm

Biomechanics on Human Aorta: Motivation

Pathology, Clinics
Characterization of vascular disease 
Effects of aging 
Identification of therapeutic targets (Balloon 
Angioplasty)

Graft design 
Biomimetic materials

Functional tissue engineering

Mechanobiology

Macroscopic 
response

Micro- and nano-
structure

Model
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Human Aorta: Mechanical Parameters

geometric deformation

stress

strain

fiber – matrix composite

fiber alignment

fiber strain

Macroscopic Nanoscopic

Collagen -

The most abundant protein
0.30

0.25

0.20

0.15

0.10

0.05

0.00S
tr

e
s

s
 

 (
N

/m
m
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0.120.080.040.00

Strain  (1)

P. Fratzl, Current Opinion in Colloid and Interface Science, 2003

6
5

 n
m
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Human Aorta: Sample Preparation

After dissection into 

its major layers

The final 

sample

Sobotta, Atlas der Anatomie des Menschen, 

Band 2, 20. Auflage, S.14, Abb31

An artery, cleaned from 

surrounding tissue
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Human Aorta: Collagen Fiber Orientation

F=0
qr

azim

F=0

F=0

F=max

F=max

F=max
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Phase 

III

Phase I Phase II

Nano – Macro Coupling

Fiber Rotation


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F. Schmid et al., J.Synchr.Rad., 

2005, in press
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Motivation for combined approach: LT & SWAXS 

18 silica micro-beads

trapped and manipulated to 

form the vortices of a 

Diamond cell.

(M. Padgett group @ Univ. St. Andrews UK)

Adapted from: 

Grier, Nature 424, 810 (2003)

X-ray

z y Adapted from: 

Grier, Nature 424, 810 (2003)

X-ray

z y

Bulk: time and assemble averaged properties

Single Particle: local fluctuations

µ-shape nanostructure corr.

single particle chemistry

Multiple Particle Trapping: local information on

interactions

single shot experiments
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0 – sample cell (capillary connected

to µfluidics)

1 - IR laser @ 1064 nm

2 - Phase Programmable Modulator

(PPM) Hamamatsu

3,4 - microscope objectives,

Nikon, Olympus

5,6 - CCDs

light paths

Visible

OT

X-ray

D. Cojoc et al., Proc. SPIE 6326, 63261M (2006)
H. Amenitsch, et al., CP879,

SRI:Ninth International Conference, AIP, 1287

(2007)

D. Cojoc et al., APL, 91, 234107, (2007)

Schematic of the optical manipulation for SAXS 

LASER

Syringe

pump

Microscope
Sample Holder

Objective

DOE

IR

X-ray

LASER

Syringe

pump

Microscope
Sample Holder

Objective

DOE

IR

X-ray

LASER

Syringe

pump

Microscope
Sample Holder

Objective

DOE

IR

X-ray

LASER

Syringe

pump

Microscope
Sample Holder

Objective

DOE

IR

X-ray

ESRF: ID13

@46 m & @100 m

KB Mirror

Ref. Lenses

Beam size: ~1 µm

X-rays: ~13.0 keV

(λ = ~0.94 Å)

Detectors: 

Mar165

Frelon
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The boundaries of cells are formed by

biological membranes, the barriers that

define the inside and the outside of a cell.

Phospholipids are the major components of 
biological membranes that form the structural 
matrix into which proteins are imbedded.

In aqueous solution: 
self assembly into, e.g., 
unilamellar vesicles

Phospholipid Membrane Stack

1 - 10   mm

dW H2O

dB

d

multilamellar vesicle: 
LIPOSOME

Motivation to combine LT, liposomes and SAXS

MicelleBilayer

Hexagonal Phase

Cubic Phase

Lyotropic Phases
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Diffraction from single

cluster (10 µm)

Diffraction pattern 

and azimuthally 

integrated 

diffraction pattern

D

Diffraction image: exposure time 5 s

POPE (Palmitoyl-Oleoyl-Phosphatidyl-Ethanolamine) multilamellar

vesicle (1 wt%)  in 1 mol CaCl2, Cluster size: 8-10 µm 

Liposome size: 1-2 µm, Phase: Liquid crystalline Lα

SAXD of optically trapped liposomes
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SAXD of optically trapped liposomes

IR-Laser

(A) (B) (C)

10 μm
Optical image laser

‚Diffraction image‘

(1st order reflection)

of the cluster

Diffraction

from single

clusters (8-

10 µm)

Optical image

cluster

Step: 2.5 x 5 µm2
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Scanning Diffraction from two clusters

multiple trapping

Optical image 

of the clusters + 

laser

‚diffraction

image‘

of two clusters

15 µm

SAXD of optically trapped liposomes

Step: 3x5 µm2

DOPE (hexagonal structure) 
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87

New LT set-up

23.09.201
Heinz Amenitsch (amenitsch@tugraz.at)

Improved Sample container

S.Santucci, et al. Biochemistry 2011
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X-ray Diffraction from Starch

H. Lemke et al., Biomacromolecules 2004, 5, 1316-1324

Cartoon Starch Ganule

Cartoon Amylopectin Structure

Waigh T et al., Macromolecules, 1997

Phase Contrast 

Image of Potato 

Starch Granules

WAXD d(100) = 1.5 nm

SAXD d = 9 nm
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Scanning diffraction experiment
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SAXS of optically trapped starch granules (from potato)

2.12 min x 4 accel.

FoV 40 x 30 µm

5 µm

Integrated Intensity

& I(100) Reflection

Max. exp. 

Time: 200 ms!!!

Time: 1.5 s !!!
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23.09.2017

Heinz Amenitsch (amenitsch@tugraz.at)

Simultaneous Fitting SAXS and WAXS

Porod & Lorentzian Peak

Rod
Plate

Porod const. SAXS

Porod exp. SAXS

Peak int. WAXS

D.Cojoc, H. Amenitsch et al., APL, 2010

Radiation Damage
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23.09.2017

Heinz Amenitsch (amenitsch@tugraz.at)

Laser Tweezers Protein Crystals 

0-3 9-12 18-21

Insulin Crystal

S.Santucci, 

C.Riekel et al. 

Biochemistry 

2011
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The boundaries of cells are formed by 

biological membranes, the barriers that define 

the inside and the outside of a cell.

Phospholipids are the major components of biological 
membranes that form the structural matrix into which 
proteins are imbedded.

In aqueous solution: 
self assembly into, e.g., 
unilamellar vesicles

Phospholipid Membrane Stack

1 - 10   mm

dW H2O

dB

d

multilamellar vesicle: 
LIPOSOME

Liposomes and SAXS

MicelleBilayer

Hexagonal Phase

Cubic Phase

Lyotropic Phases
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X-ray

ki

kf
Q



q

q

Scattered beam

sample

Incident beam

Grazing Incidence Small-Angle 

Scattering (GISAS) +

Reflectometry

Small-Angle Scattering 

(Diffraction)

Scattered beam

sample

Incident beam

R

2q

 
2

3 )exp()( =
V

rQirrdQI

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r
V

rz rQirrdQQI

2

3 )exp()(,  =
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

Qz

Qr

Qx

Qz

Small Angle Scattering - Surface Diffraction



95

amenitsch@tugraz.at & 

amenitsch@elettra.trieste.it

kf

ki
kf

ki -ki

Q

ai a‘i
a‘f af

|Ti(ai)|
2 |Tf(af)|

2

Refraction EffectsQz

Qr

r
V

rQirrd

2

3 )exp()( 


  =rz QQI ,  
2

iiT a  2

ffT a

w2q scan

w scan

Bragg

Laue

Vineyard (1982), Shinha et.al. (1988)

kf

kfai
af

2q

Q

ki

2q scan

Distorted Wave Born Approximation

The Yoneda wings
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„Higher Orders“ of DWBA

ai a‘i
a‘f af

|Ti(ai)|
2 |Tf(af)|

2

ai
af ai

af

ai
af

S(q)

R(ai)

Lazzari R, ISGISAXS: program, J APPL CRYSTALLOGR 35: 406, (2002) 

http://www.esrf.fr/computing/scientific/joint_projects/IsGISAXS/isgisaxs.htm

M.P.Tate et al., J.Phys.Chem, 2006
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Fig.  (A) the scattering geometry in reciprocal space. (B) Scattering geometry in real space. The 

abbreviations are: (ES) Ewald sphere, (DP) diffraction plane, (OPR) out-of plane reflections, (IPR) in-

plane reflections, (ML) multi-layer, (FZ) forbidden zone, (BS) beam stop.

Distorted Wave Born Approximation

SP

SP
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Diffraction Pattern DOPC @ 

25°C, 35% rel. humidity

Electron Density Reconstruction: -C  DPhPC (dB= 44.3 Å)

-D DOPC (dB= 48.7 Å), but a= 67 Å / 68 Å
L. Yang, H.W. Huang, Biophys. J. 84 (2003)

Surface Diffraction Lipids – Rhombohedral 

Phase

Rappolt,M, et.al., Adv. Coll. and Interf. Science, 111 (2004)
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The radius of the torus seems to be 

confined by the head-group size…

What do we learn? Membrane Fusion
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C. J. Brinker et al. Adv. Mater., 1999, 11, 579. 
Sol-gel 

chemistry
+ 

surfactant 
mesophase

Mesostructured 
hybrids

Mesoporous 
materials

with organised 
porosity

Self-

assembly

Treatment
SiO2 : Si(OR)4

TiO2 : TiCl4 - Ti(OR)4

ZrO2 : ZrCl4 - Zr(OR)4

Al2O3 : AlCl3

VO2-x : VOCl3

Y2O3 : YCl3

Nb2O5 : NbCl5

And binaries systems

O

CH3

O
OH O H

n                       m                      n

Triblocks POE-POP-POE

Diblocks CiEj

j
CH3

O

OH

CH3

+NBr -
CTAB

O

CH3

O
OH O H

n                       m                      n

Triblocks POE-POP-POE

Diblocks CiEj

j
CH3

O

OH

CH3

+NBr -

CH3

+NBr -
CTAB

Surface diffraction: Formation of aligned mesoporous thin films
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Film 

mesostructure
Film 

thickness

profile

The Self-Assembly of thin films as seen by In- Situ SAXS 

and interferometry
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Grosso D, et.al., CHEMISTRY OF MATERIALS 14, 931,(2002)

CTAB / Si = 0,18
H2O / Si = 5  
HCl / Si = 0.15
Ageing time  
Relative Humidity

2DH

Cubic

L

Pm3n

Im3m

P6m

Surface diffraction: Formation of aligned mesoporous thin films
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Process: Dip-
Coating

“The Evaporation 
induced self 
assembly”

EtOH

H2O

Conc.

Initial solution
Surfactant  + H2O + EtOH + HCl + Inorg. Precursor

FIXED

FIXED

(Condensation is 

time dependent 

and must be low)

Depend on the relative 

humidity within the dip-

coater

Meso-
structure

1   Quantity of surfactant

3   Quantity of H2O

2   Quantity of 

Inorganic Precursor

F. Cagnol et al., J. Mater. Chem., 2002

Extended condensation

Locking the mesostructure

Evaporation of EtOH
Reaching the CMC 

induces Self assembly

Isotropic solution

“Everything is possible”

The Modulable Steady State
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(2014)

Nanoimprinting and Hybrid Solar Cells
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Nanoimprinting and Stability
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Making of Hybrid Solar Cells
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Out come: 

(i) Improvement up 3 times in PCE

(ii) Lower annealing temperatures better

3 at 160°C to 1.5 at 195°C 

Absolute higher T  better

NIL Hyprid Solar Cells: Power conversion
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Conclusion

www.elettra.eu

PART I: 

-Introduction to the Theory (“Graz School”)

-From Experiments to Real Space

PART II: 

-Bio-SAXS (“Hamburg School”)

-Examples: -Chemistry

-Hierarchical Materials

-Gracing Incidence SAXS (“no school”)

-Biomembranes

-In situ Chemistry
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SAXS on the beach


